
parallo.com

Greasing the SaaS
release pipeline
Proven DevOps enablement
strategies for ISVs to optimise CI/
CD pipelines in Microsoft Azure

A PARALLO EBOOK

October 2020

by James Brookbanks , Azure Service Manager

parallo.com

Greasing the SaaS release pipeline2

Contents
Is friction causing inefficiency in your SaaS application delivery process? .. 3

A DevOps approach to enable rapid, high-performing releases ... 5

Implementing scalable CI/CD pipelines to reduce friction in release management .. 8

Release management – the good, bad and the must-haves .. 10

Freeing yourself to focus on success: the case for Managed DevOps ... 13

Eliminating friction: from 50% failure rate to 0% ... 15

Can you afford not to reduce release friction? ... 16

parallo.com

3

Chapter 1

Is friction causing
inefficiency in your
SaaS application
delivery process?

parallo.com

Greasing the SaaS release pipeline4

Developing a brilliant solution to a customer need is
at the core of any great software solution, but a highly
profitable one removes the friction from the process of
getting that solution to paying customers. This eBook
is aimed at helping ISVs better implement DevOps to
streamline their CI/CD pipelines and speed up release
cycles.

Playing catch-up is inefficient
Periodic approaches to product deployment, such as quarterly
release cycles, create huge pressure on internal development teams
while impacting negatively on customer experience. The build-up
of fixes and feature improvements over a quarter or an even longer
period of time require slow and careful releases to customers,
who require a pre-production environment for regression and user
acceptance testing before a new release goes live. The complexity
of these large releases inevitably result in new bugs and slow the
process further.

In mission-critical environments particularly this periodic release
process can become glacial, with quality control sometimes
meaning releases only go into production right before the next
release arrives. ISVs and their customers become stuck in this
fundamentally inefficient mode.

At best, the periodic approach slows down the process of delivering
the benefits of product improvements to customers, at worst it
results in downtime. For customers who expect technology to be
always-on, this causes frustration.

The continuous deployment method inherent to a DevOps approach
‘greases’ the release process. Continual ‘micro-releases’ and UAT
mean bugs are found earlier and addressed quicker, and new
features get into the hands of users faster.

Deployment and application maintenance costs are reduced,
while customers’ satisfaction increases. So how can you move to
this agile model of software deployment and better manage your
release pipelines?

parallo.com

5

Chapter 2

A DevOps approach
to enable rapid, high-
performing releases

parallo.com

Greasing the SaaS release pipeline6

SaaS can be a highly profitable area of cloud business
because it promises low to no administrative burden,
with much of the heavy lifting performed by a service
provider.
But to really get the most out of your product and achieve significant
growth and returns, technical fine-tuning is required. Many ISVs may
not be able to commit the time and resources this requires, however
delivering features quickly and reliably, enhancing CX, and ensuring
a resilient, scalable application environment is just the tip of the
iceberg when it comes to the positive outcomes of a successful
DevOps roadmap.

Correctly integrating DevOps throughout the lifecycle of your SaaS
offer is a proven approach to avoiding operational difficulties for
both grassroots SaaS entrepreneurs and established enterprises.

So what is DevOps at its core?
It’s the bringing together of the development and operations teams.
Historically, development teams would build a software product,
then ‘throw it over the fence’ to operations for installation on a
server and ongoing management. Inevitably, this could be the cause
of tension between the teams, especially if operations weren’t
sure what the software was intended for. Lack of communication
between the teams also meant blow-outs on project time frames.

Combining these disciplines helped them to be on the same page
from the beginning, especially with regards to the production
environment.

A 2019 State of DevOps report found that businesses who decided
to implement DevOps can expect:

• Faster delivery velocity

• Higher flexibility for development dealing with different
applications, services or components

• Fewer security issues

• Lower change failure rate

• Better reporting of metrics that can be shared across the
business thanks to automated systems

Additionally, the DevOps approach means that operations have more
influence on how software products are built, so that the areas of
security, performance and availability are effectively ‘baked in’ to the
product.

Architecting your DevOps process
It’s important for ISVs to have a clear idea of what they want to
achieve. Is it minimal downtime? Or a faster release of features?
ISVs need to identify these measurable business outcomes as they
are the foundations of DevOps transformations. The approach drives
a new set of practices, culture changes, and ways for ISV teams to
collaborate on development and operational goals.

Moving to ‘cloud cadence’ – which means changing schedules and
developing a rhythmic culture or routine - utilises the concept of one
‘engineering’ system - a single place for version control, reporting,
requirements management, project management, automated builds,
testing and release management capabilities. This creates a unified
build rather than having separate roles, meaning that everyone on
the team has a greater impact on the quality of the software.

https://puppet.com/resources/report/state-of-devops-report/

parallo.com

7

Chapter 3

Implementing scalable
CI/CD pipelines to
reduce friction in
release management

parallo.com

Greasing the SaaS release pipeline8

The aim of your software application is to get the end
product to your customer faster than ever. To do this,
while minimising the risks involved with each build
requires an accurate CI/CD pipeline setup.
These pipelines are industry best practice for DevOps teams,
enabling code changes to be delivered more frequently and reliably.

What are they and how do they help?

Continuous Integration
The process where the entire developer team ‘commit’ their code to
integrate it into a shared repository – sometimes multiple times in
a day. Compared to the traditional approach of integrating separate
instances of their individual code into the main area.

To minimise errors, CI involves a range of testing to ensure
a successful build. The idea is to establish a consistent and
automated way to build, package, and test applications.

Continuous Deployment and Continuous Delivery
CD automates the delivery of applications to selected infrastructure
environments. Once the CI has succeeded, CD picks up the software
release and pushes it out on to the production infrastructure, where
it runs and is available to end users.

Continuous testing is implemented as a set of automated regression,
performance, and other tests that are executed in the CI/CD
pipeline. The DevOps approach ensures that any code is not deemed
complete until there has been an automated test written for it.

parallo.com

9

Chapter 4

Release management
- the good, bad and the
must-haves

parallo.com

Greasing the SaaS release pipeline10

In the past, release cycles have been quite long and
spread out involving weeks or months of tedious
planning, development, followed by testing and even
a stabilisation period. With CI/CD pipelines, code is
constantly built and deployed with little to no time
between cycles. This results in a higher number of
frequent releases.
ISV’s today need to focus on shortening these release cycles by
employing proven DevOps release management strategies, one of
which we highly recommend and explore further below:

The ‘Release Flow’ method
The strategy based on Git and Azure DevOps, is a way to use version
control and branching to deliver changes safely to production,
allowing developers to rapidly build, test and deploy frequently.

Trunk-based branching strategy is a tried-and-tested approach
to version control and branching to deliver changes safely to
production. The Release Flow method consists of 4 steps, from
development to deployment:

1. Branch - The first step in this process is where a developer
who codes a fix or implements a feature creates a new branch
off the main ‘master’ branch or ‘trunk. It’s recommended to
keep these short-lived and lightweight – lasting only a couple
of days at most. The branch is worked on by one or two
developers (pair-programming).

2. Push - When the changes are ready to be integrated with the
main code, they push their mini branch to a server and issue a
pull request. This is done when the feature branch is ready to
be closed out.

3. Pull - Pull requests are a way to control the quality of code
entering the main master – through a series of automated
tests and peer code review. The idea being that other
developers objectively and speedily review new code to ensure
its release-ready before it’s merged into the main product.

4. Merge - Once everyone has signed off the code, the pull
request is complete, and the feature/ fix branch is now merged
into the main master. Acceptance testing gives it another layer
of validation.

Releasing on shorter cycles reduces the time taken to consolidate
all these branches and resolve merge conflicts, as well as fixing any
dependencies that might have been broken.

Because everything is being constantly tested, it’s much more stable
when it’s released into production. It’s also worth noting that in the
rare case that a problem escapes testing and causes something
to break when a product has been released, the DevOps approach
provides a much faster path to finding and releasing a fix for it.

parallo.com

Greasing the SaaS release pipeline11

Allowing for flexible changes and hot fixes
‘Hotfixes’ or ‘software patching’ is easier and faster because
automated pipelines have already been set up, meaning that once
a ‘hotfix’ has been added, it can be quickly released with minimal
impact on production.

To do this, a branch is created, reviewed and merged. This allows
for quick validation and seamless integration back into the
master. It also ensures that the change isn’t accidently left out of
the master resulting in a recurring error.

Is this the right approach for you?
If your development teams find themselves manually building and
juggling multiple production environments and repositories then
a trunk-based approach might be the release management silver
bullet you’re looking for. It makes working in distributed teams
easier, allowing teams to work on separate parts of their project
and join their results consistently and cohesively into the main
product.

It provides faster software development speed and reduces
tedious processes. This makes it the perfect strategy for
ISVs focussed on providing their customers with new, robust
features or allowing for flexibility within the product itself (for
example, pivoting due to unforeseen circumstances like a global
pandemic).

Trunk-based development needs a mature build infrastructure,
streamlined processes and disciplined development teams.

parallo.com

12

Chapter 5

Freeing yourself to
focus on success:
the case for Managed
DevOps

parallo.com

Greasing the SaaS release pipeline13

The concept of outsourcing DevOps can enhance a
company’s competitive advantage by enabling faster,
more agile SaaS delivery. Using DevOps through a
reliable managed services provider is a perfect fit for
software teams who don’t have time and/or the expertise
to manage a complicated application infrastructure but
need it ASAP. It frees up your workforce to focus on what
is strategically important for your business.
An ISV’s development team typically focus on paid feature requests,
product roadmap items, and customer impacting bugs with no Ops
work-around. Having a managed DevOps service in place means
you can keep the tech debt, which builds up in the backlog, to a
minimum, while enabling the adoption of new technologies that
move the needle. The outsourced service can clear out that backlog,
ensuring that your app is leveraging the most efficient features, and
not getting left behind.

Parallo has extensive experience providing this service across a wide
range of SaaS customers. Our team of automators and orchestraters
can automate environment builds, deployment pipelines, self-healing
corrective actions and much more. The Parallo DevOps team rapidly
fill the gap between Ops and Dev, providing value to both.

Using DevOps to drive growth
We use the Azure DevOps tools to add maturity to ISVs development
teams and their processes. For many of our customers, we’ve
developed a robust, automated CI/CD release pipeline process,
meaning they can now test and deploy many times a day with
confidence. This enables them to test and bring new features to
market faster and more efficiently than before. It also means they’re
using best practice DevOps in their team, implementing small
releases frequently, not ‘big bundle’ releases spread far apart.

We work with our customers to solve business issues with Azure
DevOps, such as job lifecycle monitoring and management solutions.
A solution of this nature delivers significant business impact, by
providing immediate feedback and the ability to fix issues on their
platform before they impact greater numbers of customers.

Because everything is being constantly tested, it’s much more stable
when it’s released into production. It’s also worth noting that in the
rare case that a problem escapes testing and causes something
to break when a product has been released, the DevOps approach
provides a much faster path to finding and releasing a fix for it.

parallo.com

Greasing the SaaS release pipeline14

Eliminating friction: from 50% failure rate
to 0%
One of our customers, a New Zealand ISV, had two key challenges around product development:

1. Product testing and release process

2. No solution for the monitoring of in-process jobs

They used three environments across their application. Each environment required at least a
45-minute build time before new features or bug fixes could be tested or applied.

Over time, the failure rate for the build process rose to more than 50%, despite the development team
spending significant time hand-holding each build cycle. It got so bad that the team began testing on
the production environment.

Parallo re-architected all three environments and built a new automated build and release process
using Azure DevOps, resulting in a complete build time across all three environments in 5 minutes,
with 0% failure. The company is now highly agile and responsive.

parallo.com

Greasing the SaaS release pipeline15

Can you afford not to
reduce release friction?
Friction in the product release process creates
inefficiencies that are costly for ISVs, while impacting on
the satisfaction of your paying customers. Successful
SaaS enterprises are those with not just great IP, but
smooth and continual releases.

CI/CD pipelines are the ideal approach for ISVs that want
to improve applications frequently and require a reliable
delivery process. Its aim is to standardise builds, develop
tests, and automate deployments; in a nutshell, it’s the
manufacturing process for deploying code changes.

Once in place, DevOps teams can focus on the process of
enhancing applications and less on the system details of
delivering it to production environments.

It is time to get out the grease gun for your product
release pipeline.

If you’d like to find out more about how DevOps can keep you competitive,
and be harnessed for business success, don’t hesitate to get in touch and
we’ll get a discussion started.

https://www.parallo.com/contact

